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1. INTRODUCTION

Let
m-l

L = Dm + L a;(x) Di
;=0

(Ll)

be a linear differential operator defined on the interval [a, b] with null space
N(L). Given a partition .J = {a = Xo < Xl < .. - < X/o < X"+1 = b} of
[a, b] and a vector ./It = (ml , ... , m,.) of integers with 1 ~ m,. ~ m,
i = 1,2,... , k, we define

Y(L; jt;.J) = {s: s !(X;,Xi+l) E N L , i ~ 0, 1, , k, and

D~-lS(Xi) = D~-lS(X,.), f = 1,2, , m - 111; , i = 1, ... , k}. (1.2)

We call Y'(L; "It; .J) the space of L-splines.
Although L-splines have been studied in a number of papers, compared

with polynomial splines (see, e.g., the survey article of de Boor [l}) there
remain a number of important gaps in their constructive theory. The purpose
of this paper is to fill some of these gaps. To accomplish this, we construct
a basis for Y' consisting of local support L-splines, and a corresponding dual
basis. We then use the latter to study the condition number of the LB-splines,
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to study certain quasi-interpolants, and to obtain error bounds for L-spline
interpolation.

2. LB-SPLINES

In this section we construct local support L-splines which are the analogs
of the classical polynomial B-splines. Although there are techniques for
constructing such local support splines in general (cf., Jerome and Schumakes
[10]), for our purposes we need an explicit construction (which, in fact,
closely resembles the construction of the polynomial B-splines).

We begin by defining an extended partition 3 = {Yi}im+K, K = L::=l mi,
associated with Y(L; Jt; ..1):

and

Yl = Y2 = ... = Ym = a, b = Ym+K+! = .,. = Y2m+K (2.1)

Tn! mk
~~

Ym+! ~ ... ~ Ym+K = Xl ,... , Xl ,... , X" ,... , X" . (2.2)

Our aim is to construct a sequence {Bi};,,+K of splines in Y(L; Jt; ..1) such
that

and

B.(x) > 0 for Yi < X < YHm (2.3)

Bi(x) = 0 for a ~ X < Yi, YHm < X ~ b. (2.4)

We shall define Bi explicitly in terms of a certain Green's function and with
the help of certain generalized divided differences. First we need the following
fact from the theory of ordinary differential equations.

LEMMA 2.1. Given L as in (1.1), there exists D > 0 such that if J is any
subinterval of I = [a, b] with IJ I < D, then N L has a basis {U/}~l which
forms an Extended Complete TchebycheTT system on J.

See, e.g., Karlin [13].
As our construction of the LB-splines involves using ECT-systems, we

shall henceforth assume that 2m.3 < D, where .3 = maxO<i<k (Xi+! - Xi)'
Suppose that n is such that h = (b - a)!n < D!2, and let Zv = a + v . h,
v = 0, 1'00" n. Fix 0 ~·v ~ n. By construction, the interval Jv = {zv, Zv+2}

has length less than D,and hence by Lemma 2.1 there exists an ECT-system
{U{vK~l forming a basis for NL on Jv . For ease of notation we drop the super­
script Jv , keeping in mind that if we work on other intervals we wiII have to
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take a new basis. By the theory of ECT-systems, we may assume that {Ui}~'

is given in the canonical form

1I1(X) = H'I(X)

u2(x) = H\(X) C1I'2(S2) dS2
• Zv

(2.5}

where Wi E Cm-i[JvJ and Wi(X) > 0, i = 1, 2, ... , m.
Associated with the ECT-system {Ui};" we shall need the differential

operators

where
DJ = DU!wi), i = 1,2, ... ,m

and Dof = f We note that on the interval Jv the differential operator Lm

is well defined and has null space N Lm = N L = span{ui};". For later reference,
we note that Green's function associated with L m and the initial conditions
LJ(zv) = 0, i = 0, 1, ... , m - 1 is given by

x~y

x <yo
(2.6)

There is an adjunct set of functions which will play an important role in
our construction. Let

ut(x) = 1,

ui(x) = ClV",,(sm) dSm ,
... Zv

u~(x) = r w",(sr,,) rm
... {3 1\'2(S2) dS2 ••• dSm •

Zp "'II-V

The set U~ = {u!}T forms an ECT-system on J. It spans the null space of
the differential operator L~, where

Li' = Di'D[l ... Di,

D'!'f= --!lL
, \\''''-i+1 '

i = 1,2,..., In,
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The ECT-system u;;; can be extended to an ECT-system U";+1 = {unr'+1
simply by adding the function

where Wm+! is any positive function on Jv •

Given a sufficiently smooth function f, we define its divided difference with
respect to U.~+1 over the points II ~ ... ~ Im+1 E J by

where

with

D ( ~ ,..., 1.';+1 )
[ ] f til'''·' Um ,[
II , ... , 1."'+1 * = ---=--'---'---"'--'~-

D ( I~ , ... , 1~+l )
U1 , ..• , Um+1

D ( 11 , , 1m+1 ) = det(L*U:"(t.))'."T,!ui , , U.~+1 d,' 1 ',1-1

(2.7)

j = 1,... ,m.

The numerator in (2.7) is defined similarly. For convenience of notation,
we write

D ( ) D (
II , ... , Im+1 )

U.i.H 11 , ••• , 1m+1 = * *.
U1 , ... , U"'+1

This determinant is never °for {/i}T+I in Jv since U.t+l is an ECT-system on
this interval.

We are finally ready to define the LB-splines Bi for all i such that Zv ~ Yi <
Zv+1 . For any such i, let

i = 1,..., m + K, (2.8)

where

and gm(x; y) is Green's function defined in (2.6).
The construction outlined above can be repeated for each v = 0, 1,... , n - 1

to construct a full set of m + K LB-splines {Bi}T+K
• The following theorem

summarizes their basic properties.
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THEOREM 2.2. For each i = 1,2,... ,111 + K, the spline Bi is the unique
(aside from a constant multiplier) L-spline satisfying properties (2.3)-(2.4).
Jyforeover,

and

m+K
I Bi(x) = u1V(x),
i=l

m+K

I BiCx) oS;; U{(x) --l- u~-y'(),
i=l

v = 0,

1 , .. " n~ (2.11)

where in general {ut};" is the ECT-system associated with the interval J,. =

[zv , ZV...L2]·

Proof For each i, if Jv is the associated interval used in the construction
of B i , then on Jv we have Bi E !/'(NL ; .j!; Ll), and it follows that
B i E !/'(L; JI; Ll). Moreover, on Jv , Bi is i~ fact a Tchebycheffian B-spline
(cf. [15-17]), and thus satisfies properties (2.3)-(2.4). If Bi were another
element of !/'(NL ; JI!; Ll) satisfying (2.3)-(2.4), then for some chcice of
[3, g = B i - [3B i mwould have a zero in the interval (}';, Yi+m), which by
Theorem 5.1 of [17] can happen only if g = 0; i.e., Bi = ,BB; . '

To show (2.10)-(2.11) we rely on results on Tchebycheffian splines. Let
Iv = [zv, zv+l], v = 0, ... , n - 1. Then with the normalization (2.8), it is
known (cf. Marsden [15]) that for x E Iv the sum of aU B;(x) with Yi in /'-1
is at most ui-1(x). Similarly, for x E Iv, the sum of B;(x) with Yi E / 1, is at
most u{(x). Property (2.11) follows. In 1o we have a complete set of Tcheby­
cheffian B-splines, and hence the sum is exactly u1o(x) for an x E /0' I

Theorem 2.2 shows that each of the LB-splines {Bi};,,+K defined in (2.8)
is an element of !/'(L; .4't; Ll). It can be shown by a simple direct argument
that geL; Jt; Ll) is a m + K-dimnsional linear space (cf. [16]). Since it
follows from our construction of a dual set of linear functionals {i\;jr+ K

in the next section that the {Bi}~n+K are linearly independent, we conclude
that the LB-splines {Bi};,,+K form a basis for !/'(L; Jf; Ll).

In the remainder of this section we explore the connection between the
LB-splines and the classical polynomial B-splines. We begin with a lemma
about determinants formed from an EeT-system.

LEMMA 2.3. Let U", = {u;}~' be an ECT-system as in (2.5), and let a C;
t1 oS;; .0' oS;; t m oS;; b. Then the determinant D = Du (t1 , ... , [",) can be written
as a multiple integral (over positively oriented subintervals of [a, bJ) l\'!lOse
integrand involves only products of the functions WI, ... , l\'",. The same
assertion holds for the determinant

(2.12)

for all k = 0, 1,0,0, m - 1 and all a oS;; x oS;; b, x oF t" i = 1,... , 111 - 1.
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Proof To establish this lemma we need the concept of a reduced system
associated with Um. Following Karlin [13], we call Urn; = {ui.i}~,,;i the
jth reduced system associated with Urn, where

Uj ,2(X) = Wi+l(X) J'" wHlsj+2) dSi+2 ,
a

X Sm-l

uj,m_lx) = Wj+l(x) f ... f w,is",) dSm ... dSH2 .
a a

Clearly Um ; is an ECT-system.
We proceed by induction on m. Suppose that

(2.13)

Then factoring WIC'Tl) out of the first row of D, Wl'T2) out of the 11 + 1st
row, etc., and subtracting each row with a 1 in the first column from its
predecessor with a 1 in the first column we obtain (after expanding about the
first column)

Now by the inductive hypothesis the integrand is a multiple integral of
products of the w's, and our first assertion has been established.

Consider now the determinant (2.12). By the definition of the L" , we note
that

L"Ulx) = 0,

= Uk,i-I.,(X),

i = 1,2,... , k,

i = k + 1,..., m.

Thus the row corresponding to x in the determinant has zeros in the first
k columns. Thus if k steps of the above process are carried out, this row is
not disturbed, and we end up with a determin~nt formed from functions
in the kth reduced system Urn];;' Now the argument used above applies to
complete the proof. I

We can now give upper and lower bounds on the determinants discussed
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in Lemma 2.3. Our bounds involve the classical Vandermande determinants
defined by

where V,,, = {I, X, ... , xm- I}; i.e., II'I(X) = 1 and IV;(X) = xi-I, i = 2,.", m.

LEMMA 2.4. Let Um = {Ui}~n be an ECT-system as in (2.5), and let

M; = min w;(x) ,
a~x~b

M i = max lV,{X) ,
a<x~b

(2.15)

i = 1,2,... , m. Then there is a positive function CI(.Ml , •.. , M m) such that
for all a :s;; t1 < ... < tTn :s;; b,

(2.16)

where QI = C1(IVl1 , ... , lVlm) and C\ = C1(Ml , ... , M m ). Moreover, for
a:S;; x:S;; b,

Ql I DI'V(ti ,... , tm - 1 , x)1 :s;; I LkDu,,,(tl , , tm- 1 , x)1

:s;; C1 I D"V(tl , (",-1, x):. (2. J7)

Proof In view of Lemma 2.3, we get an upper bound on D u (11 ,,,,, tm )

if we replace each weight function Wi by 1M;, i = 1,2,... , m. But if\v1 " •. , W",

are all constant, then the functions UI , ... , U'" are constant multiples of
1, x, ... , x"'-\ and the corresponding determinant is a constant multiple of
the Vandermonde. This proves the upper bound in (2.16). To get the lower
bound we substitute M; for each 11';, i = 1, 2" .. , m. The bounds in (2.17)
are established in the same way. I

The following theorem shows that the LB-splines {Bi}~'+K can be regarded
as perturbations of the classical normalized polynomial B-splines defined by

where

D (' )'i , ... , )'i+m ')
.1,.~., xm.-I,j,

[Yi ,... , Yi+",Jf = --'--'----'-"--
( y; , , Yi+m )

\ 1, , X'" ,

is the usual divided difference.

i = 1,... , m + K

(2.18)
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THEOREM 2.5. Fix {y;};:"+K, and consider a sequence of differential oper­
ators as in (1.1) with coefficients aO,n, 00" am-l,n' Let B1 •n(x),.00, B.nz+K,n(x)
be the associated LB-splines. Then

implies
II ai,n 1100 --+ 0, i = 0'00" 111 - I as n --+ 00,

i = 1, 2'00" m + K.

(2.19)

Proof From the theory of ordinary differential equations we know that
(2.19) implies that the null spaces of the corresponding linear differential
operators tend to V", = {I, X,.oo, x nz - 1}. At the same time the w's defining
the EeT-systems spanning these null spaces tend to the values 11'1 = 1,
w; = i-I, i = 2"00' m associated with the functions V,,,. It follows that
Green's function g",(x; y) in (2.6) tends to (y - x)~-l, while by Lemma 2.4
the divided difference (2.7) tends to the usual divided difference (2.18).
We conclude that Bi,n converges uniformly to Nt' for each i = 1,2'00"
m +K. I

This perturbation result can be used to extend some of the properties of
polynomial B-splines to LB-splines for L sufficiciently near Dm. We do not
make further use of this observation, however, as the dual basis constructed
in the following section is a considerably more potent tool.

3. A DUAL BASIS

Suppose that 2m.2f < 0, where .2f and 0 are as in Section 2, and let
{BJr'+K be the LB-splines constructed in (2.8). In this section we construct
a dual basis for {B;};:"+K; i.e., a set of linear functionals {A,KHK such that

i,j = 1,2,... , m + K.

Fix 1 ~ i ~ m + K, and let Jv be the subinterval of [a, bJ used in the
construction of B.; . Let L;, be the operator defined in 2 associated with this
interval. and let U,~ be the associated EeT-system. Set

D u*",( Yi+l 'OO" Y;+".-l , x)
rp;(x) = ,

D U::._1(J;+l ,oo·,Y;+m-l)

Let T(x) E Loo"'(IR) be such that

T(x) - °
T(x) - 1

II DiT IILoo[o.l] ~ Cj < 00,

for x ~ 0,

for x ~ I,

j = 0, 1,... , m - 1.
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T is a kind of transition function; it can be constructed by integrating the
perfect B-spline (see [3]). With

(
X - Vi )1f;i(X) = <Pi(X) . T -

. Y;+m - Yi'

we now define a linear functional for functions f Eo L1[a, b] by

t..J = f'i+'" f(x) L:'1f;i(X) dx.
Yi

(3.1 )

THEOREM 3.1. The sequence of linear functionals {A.;];"+K forms a dual
basis for {BiK'+K.

Proof By the support property (2.4) of the B-splines, it follows directly
from (3.2) that

j = 1,2,... , i - 111, i + m, ... , m -;-- K.

Now it is easily shown (cf. [16]) that if LtJ Eo L1[)'j ,)'1+,.,], then

[ . .] j' _ J,Y,+m B;(x) L:'f(x) 1-
Yj, ...,)j~m * ~ L\.

Y j ')(j

This implies that

(3.3)

Since 1f;;(x) vanishes at Ji+l ,... , Yi+m~l (with derivatives when there are
repetitions), it follows that

\Bj = 0, j = i + I - 111, ... , i - 1.

The functions 1f;i and <Pi agree on the point set Yj ,,,., )'H", (along with their
derivatives in case of repeated y's) for j ;> i. Since <Pi E U,; , this implies

j = i + 1, ... , i + 111 - 1.

It remains to check that t..;B; = 1. By construction CXi1f1i agrees with the
function
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on the point set Yi ,... , Yi+m . But then

AiBi = [Yi ,... , Yi+m] * gi = 1,

and the theorem is proved. I
The following theorem gives bounds on the linear functionals {il.i}:;,,+K.

THEOREM 3.2. The linear functionals {Ai}~n+K defined in (3.2) satisfy

(3i := (Yi+", - Yi»

(3.4)

i = 1,2,... ,111 + J( and any 1 :::;;; p :::;;; 00, where C is a constant depending
only on m and the quantities in (2.15).

Proof Applying the Holder inequality to (3.2), we have (with Ii =
[Yi' Yi+lD

with lip + lip' = 1. Using the Leibniz rule, it is easy to show by induction
on m that

L *,I·.(X) = ~ Cl,;(x) Dm-kT ( x - )'i ) L ~ .(x)
m'!'. L.- d (x) Y y' I,; f(J, '

k=O k"' i+m - i

where ck(x) depends only on the values of {Wi}:;" and their derivatives while
dk(x) depends only on powers of {lVi}~' . Since

II
Dm-kT ( x - Yi ) II <: c,n-I,;

'-......::::::: ·Yo.-k'Yi+m - Yi IIL",[Ii ] (Yi+m - Yi)

and C:,f(J, = 0, this implies

k = 0, 1'00.,111,

By Lemma 2.4, and the definition of f(Ji ,

(3.5)

X Eli,

where

q),(x) = V(Yi+l '00" Yi+m-l , x)
V(Yi+1 ,... , )'i+m-1)
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Now suppose
11

..--~

Y;+1 , .•• , J'i+m-1 = T1 , ...• T1 < ... < Td •.. Td

Then
It

4J;(X) = n (x - Td'
1:=1

and it follovvs that

161

Substituting this in (3.5) yields (3.4). I
The dual basis {A;}~+x for {B,}~'+K can now be used to examine the con­

ditioning of this basis.

THEOREM 3.3. Fix 1 ~ P ~ 00. For i = 1,2,... , m --'- K let

(3.6)

Then there exist constants 0 < C1 , C2 < 00 depending only on m and the
quantities {M;, M.}~n in (2.15) (with respect to the finitely many intervals .J,,)
such that

for all sets of coefficients C1 , ... , cm+K •

(3.7)

Proof
m+K

Let s = ~=l c;B;.T1' Then

m+K m+K m~K

I I C, 171 = L I ,A.;s 171 3; ~ c II s l:fpU;J -s;: Cis I:fp[."b] .
i=l i=l i=l

Conversely, by our normalization of the B-splines (cf. (2.10)-(2.11))

i == 1,2, .... m + K

Thus.

(i s(x)[P dx = t rJ~II. t c;Bi ." [1'
a J=O Xj 2=,J-1JI+l

tn+K

:s;; C L :c; [71. I
i~1
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4. ApPLICATIONS

In this section we illustrate how the dual basis constructed in the previous
section can be used to derive properties of L-splines. We begin by defining
a useful approximation operator. Let {B;}~'+K and p-;};,+K be as in 3. Then
for everyf E L,,[a, b] we define

m+K

Qf(x) = I I\;jB;(x).
i=l

Q is a mapping of LAa, b] onto the spline space Y'(L; jl; L1). In analogy
with similar operators which have been constructed for polynomial splines,
we call it a quasi-interpolant (cf. [1,4, 13]).

THEOREM 4.1. Q is a bounded linear projector ofL,,[a, b] onto /7(L; ,;II; L1).
Moreover, if fEL,,'tI1(a, b) = {f: DifEL,,(a, b), °~j ~ m} then for j =

0, 1, ... ,111 - I,

(4.1)

for all 1 ~ p ~ q ~ 00. Here C is a constant which is independent of both
f and L1 while ;;1 is defined by ;;1 = min1(:i~m+k (Yi+l .- Y;)·

Proof Fix °~ j ~ m - I and a ~ t ~ b. By the generalized Taylor
expansion associated with Green's function g;;: corresponding to the operator
L~, we have

f(x) = pix) + f gr;'(x; y) Lf( y) dy,

with Pl E Um such that

(4.2)

j = 0, 1, ... ,111 - 1.

Since clearly Qg = g for all g E Y'(L; m; L1), Theorem 3.2 implies

I Di(f - Qf)(t)[ = I Di(pt - Qf)(t)I
'm+k

= I /1.;( Pt - f) DiBlt)1
i=l

,.
::;:; c I Lli1 !" II Pt - fll£.([,) 1DiBi(t)l,

i=v+l-rti.

where v = vet) is such that t E Iv, where in general I; = [Yi' Yi+1). Now
applying the Holder inequality to (4.2), and observing that

I g~(x; t)1 ::;:; C 1 x - t 1"'-1 for all x and t,
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one easily sees that

By a Bernstein-Markov-type inequality for L-splines (cf. [12]),

163

j = 0, 1,»>, III - 1.

Combining these facts, we obtain

3 m - l i p "

I DiU - Qf)(t) [ :(; C J"i L II LfilLpUil .
- i=v+l--m

and integrating the qth power,

;

L
f=i+l-m

Summing this inequality over i = 111, ... ,111 + K and using the Jensen
inequality we obtain (4.1). I

As a second application of our dual linear functionals, we now give error
bounds for best interpolating L-splines. Let Yl :(; Y2 :(; ... :(; Y2m+K be a
set of points with Yi < Yi+m , aU t, and such that

)'1 = ... = Ym = a, b = Ym+K+l = ... = YZm+K'

For each t = 1,2,...,111 + K, define

di = max{j: Yi = .. , = Yi-i}

and

Associated with these linear functionals we may consider the best
interpolation problem

minimize II Lu IiL2[a bl •
ueUF •

where F is a given function in Lzm[a, b], and

(4.3)

UF = {IE L 2"'[a, b]: JLd = JLd, t = 1,2,...,111 + K}. (4.4)
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Such best interpolation problems have been considered by many authors
(see, e.g., [9, 11] and the references therein).

It is known (cf. [11]) that if K ~ m then problem (4.3) has a unique solution
s (called an L-spline) and s is uniquely characterized by the fact that it lies
in UF and satisfies the orthogonality condition

rLs(x) Lg(x) dx = 0
a

for all g EO Uo .

The spline s can be determined numerically if we introduce the B-splines
{BtK'+K associated with the partition {Yi};,,+K and the operator L *. In this
case, it is known that

m+K
Ls(x) = L CiBt2(X),

i=1

(4.5)

To determine the coefficients {ci }, we observe that (cf. (3.3» for each
j = 1,2,... , m + K,

bf Bj(x) LF(x) dx = [Yj ,... , Yj+m]* F = [Yj ,... , YHm]* S
a

m+K b

= L Ci JBj(x) Bt2(X) dx.
i=1 a

This implies that
Ac = r,

where c = [c1 , ... , Cm+KY, r = (r1 , ••• , rm+KY, and A = (Aij)~t!i ' with

rj = r B/,2(X) LF(x) dx,
a

Ai; = rB~2(X) Bi~ix) dx.
a

(4.6)

(4.7)

(Here we have used the normalized versions of the B-splines introduced in
(3.6).)

As a first step towards establishing error bounds for F - s, we have
the following theorem.

THEOREM 4.2. Let I :;:;; P ~ 00. Then

II Ls lip:;:;; C II LFllp(.zr/~)11/P-1/21 (4.8)

where C is a constant independent ofF, sand .1. (In the following, C is always
such a constant but may have a different value in each line).
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Proof First we show that the condition number K = II A li2 • Ii A-l 1:2
is bounded independently of L1. For any vector y E Rm+K, (3.7) (applied to the
B-splines B1;2) implies

II Ay 112 ~ Ii I y j B:2 11:/11 y 11 2 ~ ell y 1:2 .

This shows Ii A-1 112 is bounded. On the other hand,

I(Ay, (3)1
II Ay 112 = ~~~ II [3112

= s~p If I y j B:2 L f3;B: 2 //11 [3112

~ s~p II L y j B:2 11JI I f3iB7211j11 f3 112

~ C Ily112'

where we have again used (3.7). This shows II A:;2 is bounded. By a theorem
of Demko [6], the elements bi] of the inverse matrix A-1 then satisfy

for some constants C and eE [0, 1) which are independent of L1. Thus, we
have

(
' )1/'1' (( )1')1/'1'
~ I c" 1'1' ~ C ~ ~ elk-il I rj I ,

Since, by (3.7),

m+K _ II - (m+K /l/ P
il Ls II = II ~ C·L1Yp-l/2B:" .::;;; C max L11/P-1/2 1" I c.' IP
, 'P L. " l.P I - . I ) L. 'I

i=l P 1 ( i=l J

and furthermore

::;;; C max 3 1 / 2- 1 /p I: LF II- )·1 ,p,
j

the combination of all these inequalities gives (4.8).
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Using Theorems 4.1 and 4.2 we can now establish the desired error bounds
for L-spline interp1ation.

THEOREM 4.3. Fix 1 ~ p ~ 00. Then for ..J sufficiently small, the solution
s = s(F) of the best interpolation problem (4.3) satisfies

o~j~m

0~j~2m-1

(4.9)

(4.10)

ifFEL;m[a, b]. Here the constant C1 does not depend onFor LI while R;(..J/4) =

(..J/4)IDaX(m,2m-il+II/P-I/21.

Proof By inequalities (3.7) and (3.9) in [11] we have

..Jm
II Di(F - s(F)llp ~ c 4i II L(F - s(F»llp , °~j ~ m. (4.11)

(Actually these inequalities are stated there only for p = 2, but the proof
carries over immediately to generalp.) Coupling (4.11) with (4.8) yields (4.9).

To prove (4.10), we use the standard trick of working with an intermediate
approximation. Let 9';.*L = {fE L~m-l[a, b]:fII; E NL*L' i = 0, 1, ... , k}. By
the methods above we can construct a quasi-interpolant Qmapping Lp[a, b]
onto 9';.*L' Let g = F - OF. Then theorem 4.1 for this quasi-interpolator
implies

Since s(OF) = OF, it follows that

0~i~2m-1. (4.12)

II Di(F - s)llp = II Dig - Dis(g)llp < II Dig lip + II Dis(g)llp. (4.13)

We need to:estimate the second term. Let m < j :'S 2m - 1. Then by a
Bernstein-Markov-type inequality for L *L-splines (cf. [12]),

II Dis(g)11 < C4m- i II Dms(g)II'P

~ C4m- i ClI Dm(s(g) - g 11'1' + II Dmg lip). (4.14)
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Using (4.8) and (4.11)-(4.12), we obtain

II Dm(s(g) - g)llp ~ C(Lfj~)m II I(s(g) - g)llp~ C(Lfj~yn+~1/P-1/21 il Lg ii~)

m

~ C(Lfj~)m+II/P-1/21 I Ii ai il", 'd Dig il"
';=0

~ C(Lfj~)2m+II/P-1121Lfm II L*LF!iv

Substituting this in (4.14) and then in (4.13), we obtain (4.10) for m "'£ j "'£
2m - 1.

Now let 0 "'£ j "'£ m. Then (4.10) follows from the fact (cL [11]) that

II Di(F - s)llp "'£ cLfm-i II D"'(F -- s)llp. I

5. REMARKS

1. If L is such that NL has a basis {Ui};" which is an ECT-system through­
out [a, b], then the IB-splines and the dual basis can be constructed without
the assumption that Lf be sufficiently small. In this case the I-splines are
called Tchebycheffian splines. Tchebycheffian B-splines were first constructed
by Karlin [13]. Here we have followed the construction and normalization
of Marsden [15]. For more on the construction of local support bases for
generalized spline spaces, see Jerome [8] and Jerome and Schumaker [iO].

2. Our approach to constructing a dual basis for the Tchebycheffian
B-sp1ines follows that of de Boor [3] used for the polynomial B-splines.
There explicit numerical bounds for the norms of the linear functionals
could be obtained.

3. The quasi-interpolant constructed in Section 4 is only one of a large
collection of possible quasi-interpolants. It is possible that analogs of the
quasi-interpolants of Lyche and Schumaker [14] could also be found for
I-splines. Their advantage was that the bounds on (lower) derivatives could
be established which did not depend on ~. Theorem 4.1 gives bounds on
the distance from I-spline spaces to various calsses of smooth functions.
For related results of this type, see Jerome [8] and Johnen and Scherer [12].
It is also possible to sharpen Theorem 4.1 to give estimates in terms of certain
K-functionals and/or generalized moduli of smoothness-see DeVore [71
for the polynomial spline case.

4. Bounds on the error of I-spline interpolation in terms of II IF il2 or
il £*£FI12 have been established in several papers; see, e.g., Swartz and Varga
[18], Jerome and Varga [11], and Varga [19]. For polynomial splines, de Boor
[2] gave estimates in terms of the co-norm-(he actually considered the some··
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what different and more complicated case of a biinfinite set of interpolation
conditions. The results given here can be extended to include more general
interpolation conditions (cf. Varga [19]), and can also be made local (cf.
[5, 11] in the polynomial case). Biinfinite sets of interpolation conditions as
well as periodic problems could also be considered.
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