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1. INTRODUCTION

Let

e

m—1
L=D"+Y afx) D (LD)
=0
be a linear differential operator defined on the interval [, 5] with null space
N(L). Given a partition 4 ={a = x5 < x; < = < X3 < x4y = b} of
[a, 5] and a vector A4 = (m,,...,m;) of integers with 1 < m; < m,
i =1,2,...,k, we define

ALy M5 A) = {5:5 @z €N, i =0, 1,..., k, and
D7s(x)) = Di7's(xy), j = 1, 2, m —my, i = 1., kb (L.2)

We call F#(L; .#; A) the space of L-splines.

Although L-splines have been studied in a number of papers, compared
with polynomial splines (see, e.g., the survey article of de Boor [1}) there
remain a number of important gaps in their constructive theory. The purpose
of this paper is to fill some of these gaps. To accomplish this, we construct
a basis for & consisting of local support L-splines, and a corresponding dual
basis. We then use the latter to study the condition number of the LB-splines,
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to study certain quasi-interpolants, and to obtain error bounds for L-spline
interpolation.

2. LB-SPLINES

In this section we construct local support L-splines which are the analogs
of the classical polynomial B-splines. Although there are techniques for
constructing such local support splines in general (cf., Jerome and Schumakes
[10]), for our purposes we need an explicit construction (which, in fact,
closely resembles the construction of the polynomial B-splines).

We begin by defining an extended partition 4 = { y,)2"%, K = Zf=1 m;,
associated with F(L; #; 4):

N=Ye="=Vm =24 b =Yyuixi1 =" = Vomrk 2.1

and

mny my
—

Vm+1 < < Yk = X1 50005 X1 5evey Xpgeees Xpp » (2'2)

Our aim is to construct a sequence {B}7X of splines in F(L; #; 4) such

that
B(x) >0 for y; <x <yum 2.3)
and

B{x) =0 for a<x <y;, Vigm <x <b. 2.4)

We shall define B; explicitly in terms of a certain Green’s function and with
the help of certain generalized divided differences. First we need the following
fact from the theory of ordinary differential equations.

LemMma 2.1. Given L as in (1.1), there exists 8 > 0 such that if J is any
subinterval of I = [a, b] with | J| < 0, then Ny has a basis {u/}, which
Jforms an Extended Complete Tchebychem system on J.

See, e.g., Karlin [13].

As our construction of the LB-splines involves using ECT-systems, we
shall henceforth assume that 2m 4 < §, where 4 = maxyc;c; (X1 — X0
Suppose that 7 is such that z = (b — a)/n < /2, and let z, = a + v - h,
v = 0, 1,..., n. Fix 0 <{'v <{ n. By construction, the interval J, == {z,, z,,2}
has length less than 8, and hence by Lemma 2.1 there exists an ECT-system
{ul}7, forming a basis for N, on J, . For ease of notation we drop the super-
script J, , keeping in mind that if we work on other intervals we will have to
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take a new basis. By the theory of ECT-systems, we may assume that {#;};’
is given in the canonical form

() = 1)
wl) = W) [ wils) ds,

Yz,

(2.5}
u?n(-Y) = )‘1‘1(X) J'm H.2(52) J: z Jl . wm(Sm) dsm ng 3

v

where w; € C"[J,J and wy(x) > 0,i =1, 2,..., m.
Associated with the ECT-system {u;}7" we shall need the differential
operators
L; = DD; 4y -+ Dy,
where
D, f = D(flw)), i=1,2,.,m

and D, f = f. We note that on the interval J, the differential operator L,,
is well defined and has null space N, = N, = span{u;}". For later reference,
we note that Green’s function associated with L, and the initial conditions
L;f(z)=10,i=0,1,..,m — 1is given by

z Sy S 1
g3 3) = w0 [wals) [ [T s dsy e ds. x>y
y ¥ v
03

P
¥ <y {2.6)

There is an adjunct set of functions which will play an important role in
our construction. Let

h(x) =1,

uy(x) = f ) Wail(S,) A5

Zp

<,

3
WwolSg) dsy *=* dsy, .

3y

% Z Sm ”
wi) = [ walsw) [ |

2y

The set U = {uf}}" forms an ECT-system on J. It spans the null space of
the differential operator L}, where

Lz* - Dz*D:il ot D;ks
Dif = —PJ-— I=1,2,..,m,

N s
Wm—it1
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The ECT-system U can be extended to an ECT-system U, = {uf}"**
simply by adding the function

Sr+1 + 53
’ J wa(S2) dsy ** dSpyyq
2 ]

v

u;r‘j+1(x) = f ”m+1(sm+1)f
2

where w,,.; is any positive function on J, .
Given a sufficiently smooth function f, we define its divided difference with
respect to UJ ., over the points t; < -* < £, €J by

( Ty 5eees Iy )

* *
UL yeees Uy
[t s e f = ——hmmtne @7
D( 1500 Ima )
k *

Uy seens Upppg

where

H oo b m
D3 ) = det(Liut )i

Uy 5oy um+1
with

dy=max{k:t; =1, ; = - =t ] = Lo, m.

The numerator in (2.7) is defined similarly. For convenience of notation,
we write

tl LIXE) t'm+1
Doy (ty seers tmys) = D ( Loeees b )
Uy seees Uy

This determinant is never 0 for {£}7** in J, since U},, is an ECT-system on
this interval.
We are finally ready to define the L B-splines B; for all i such that z, < y; <
z,4, - For any such i, let

Bi(x) = (1" o[ ¥ seres Virmlse 8mlXs ¥), i=L.,m+ K, (2.8)

where

DU;';H_I( Yiseees yi+m) * DU:H-I( Vit oeees yi+m—1)
DU,*,,( Vit1 seees Virm) * DU;;,( Vi seees Vigm—1)

, 2.9

oy =

and g,.(x; y) is Green’s function defined in (2.6).

The construction outlined above can be repeated foreachv =0, 1,...,n — 1
to construct a full set of m + K LB-splines {B;}"*X, The following theorem
summarizes their basic properties.
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. ToeoreM 2.2. For each i = 1, 2,....m -+ K, the spline B, is the unique
{aside from a constant multiplier) L-spline satisfying properties (2.3)-(2.4}.
Moreover,

m+K

Y Bx) = w(x), v =0, (2.10)
i=1

and

m+K
¥ BAx) < upr(x) -+ i H(x), v = i,.., 4, (2.11)
=1

where in general {u}" is the ECT-system associated with the interval J, =

{Zu H Zv~L2}'

Proof. For each i, if J, is the associated interval used in the construction
of B,, then on J, we have B¢ ,9”(NLm ;45 4y, and it follows that
B, e #(L; #; 4). Moreover, on J,, B; is in fact a Tchebycheffian B-spline
(cf. [15-17]), and thus satisfies properties (2.3)-(2.4). If B; were another
element of S (N, ;4 4) satisfying (2.3)«2.4), then for some chcice of
B, ¢ = B; — BB, would have a zero in the interval ( y;, Vi), which by
Theorem 5.1 of [17] can happen only if g = 0; i.e., B; = BB;. "

To show (2.10)~(2.11) we rely on results on Tchebycheffian splines. Let
I, =1z.,z.4} v =0,.,n— 1 Then with the normalization (2.8}, it i3
known (cf. Marsden [15]) that for x € 7, the sum of all B{(x} with y; in 7,_,
is at most 1;7(x). Similarly, for x € I,, the sum of B(x) with y; e/, is at
most u’(x). Property (2.11) follows. In 7, we have a complete set of Tcheby-
cheffian B-splines, and hence the sum is exactly u,%x) forall xe7,. §

Theorem 2.2 shows that each of the LB-splines {B}7* defined in (2.8)
is an element of F(L; #; 4). It can be shown by a simple direct argument
that S(L; .#; 4) is a m + K-dimnsional linear space {cf. [16]). Since it
follows from our construction of a dual set of linear functionals {A}7*7¥
in the next section that the {B;}]*™™ are linearly independent, we conclude
that the LB-splines {B;}{"** form a basis for S(L; A; 4).

In the remainder of this section we explore the connection between the
LB-splines and the classical polynomial B-splines. We begin with a lemma
about determinants formed from an ECT-system.

Lemma 2.3, Let U, = {u}" be an ECT-system as in (2.5), and let a <
fy < <ty < b Then the determinant D = Dy (fy ,..., 1,,) can be written
as a multiple integral (over positively oriented subintervals of {a, b]) whose
integrand involves only products of the junctions wy,.,w, . The same
assertion holds for the determinant

LI;DUm(tl yeees bano1 s .‘C} i212}

forallk =0,1,.,m—1landall a < x <b, x51;,i=1,..,m—1.
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Proof. To establish this lemma we need the concept of a reduced system
associated with U,, . Following Karlin [13], we call U,/ = {u; }"7 the
Jth reduced system associated with U, , where

U;,1(x) = Wia(x),

x
U; o(X) = Wi (x) j Wyro(Siye) dSita »
a

e Sm—1
uj,m—]‘(x) = Wi+l(x)f f wm(sm) dsm n dsj+2 .
a a

Clearly U,,’ is an ECT-gystem.
We proceed by induction on m. Suppose that

I I
o~

bty <o Ky = Ty gy Ty < 00 << T oy T - (2.13)

Then factoring wy(r;) out of the first row of D, wy(rs) out of the [ 4 Ist
row, etc., and subtracting each row with a 1 in the first column from its
predecessor with a 1 in the first column we obtain (after expanding about the
first column)

D = wy(q) = wi(7g)

- T -1 I,—1 11
2 d e, e, e,

° f f Dunl('rl geens T1 5 S1 5 T2 5eees To 3 89 5eeey T erey Td) dSl A dsd—l .

Tt Ta-1 i

2,19

Now by the inductive hypothesis the integrand is a multiple integral of
products of the w’s, and our first assertion has been established.

Consider now the determinant (2.12). By the definition of the L, , we note
that

Lyuf(x) =0, i=1,2,.,k

= U, 1{X), i=k+1,.,m.

Thus the row corresponding to x in the determinant has zeros in the first
k columns. Thus if & steps of the above process are carried out, this row is
not disturbed, and we end up with a determinant formed from functions
in the kth reduced system U,*. Now the argument used above applies to
complete the proof. [

We can now give upper and lower bounds on the determinants discussed
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in Lemma 2.3. Our bounds involve the classical Vandermande determinants
defined by

V(tl EARRE zm) = DVm(tl geets 7:11)*
where ¥V, = {1, x,..., x® 1} i.e., wy(x) = T and wy(x) = x, i =2,..., m.
Levmva 2.4, Let U, = {u;}" be an ECT-system as in {(2.5), and let

M; = min wy(x), M, = max w/x), 2.1
a<a<b e<e<h

(¥}

\
J

i =1,2,.,m. Then there is a positive function C{M, ...., M) such that
Jor all a <t; < <1, <b,

glV(tl aeney t'm) < DUm(rl detes tm) < CI V(tl 3ercy 7'm)a \/216)

where Cy = CM,y,... M) and C, = C(M;,..., M,). Moreover, for
a<x<b,

Ci 1 D¥V(ty ey by s ) < LDy, (s v, tz s X))
LGy | DV (ty au tyyey - X 217

Proof. In view of Lemma 2.3, we get an upper bound on JDUm(z‘]L R
if we replace each weight function w, by M;, i = 1, 2,..., . But if wy ..., #'p,
are all constant, then the functions wu,..., u#, are constant multiples of
1, x,..., x™1, and the corresponding determinant is a constant multiple of
the Vandermonde. This proves the upper bound in (2.16). To get the lower
bound we substitute M, for each w,;, i = 1, 2,..., m. The bounds in (2.17)
are established in the same way. J

The following theorem shows that the LB-splines {B;}7"* can be regarded
as perturbations of the classical normalized polynomial B-splines defined by

N/x) = Gigm — P D" Dy Yol — 057, = Lo, m + K

where

Vi Vivm )
D (i xm—1 f)
s ]

P

[yz' FRRE] .}'H—m]f = Vi oreeen }"i-:—m\ .

Vo, xm

is the usual divided difference.
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THEOREM 2.5. Fix { y;}i"*%, and consider a sequence of differential oper-
ators as in (1.1) with coefficients ay . , ..., Gp_1,n - Lt By y(X)yerrs B o)
be the associated LB-splines. Then

[ nllo—0, i =0,.,m—1asn— o, (2.19)
implies
| Bin — Ni"llo —0, i=12..m+K

Proof. From the theory of ordinary differential equations we know that
(2.19) implies that the null spaces of the corresponding linear differential
operators tend to V,, = {1, x,..., x™1}. At the same time the w’s defining
the ECT-systems spanning these null spaces tend to the values w; = 1,
w; =i — 1, i = 2,...,, m associated with the functions V,,. It follows that
Green’s function g,,(x; y) in (2.6) tends to ( y — x)7~", while by Lemma 2.4
the divided difference (2.7) tends to the usual divided difference (2.18).
We conclude that B;, converges uniformly to N/ for each i =1, 2,..,,
m-+ K |

This perturbation result can be used to extend some of the properties of
polynomial B-splines to LB-splines for L sufficiciently near D™, We do not
make further use of this observation, however, as the dual basis constructed
in the following section is a considerably more potent tool.

3. A DuaL Basis

Suppose that 2md < §, where 4 and & are as in Section 2, and let
{B;}¥+X be the LB-splines constructed in (2.8). In this section we construct
a dual basis for {B;}77¥; i.e., a set of linear functionals {A,}7"+¥ such that

}\iB]' == 81-]' 5 i,] == 1, 2,..., m —l— K

Fix 1 <i<m-+ K, and let J, be the subinterval of [a, b] used in the
construction of B; . Let L be the operator defined in 2 associated with this
interval. and let U} be the associated ECT-system. Set

DU*;,,( yi+1 preny yi+m—1 s x)
QDZ('X) = D -
U,

,,,,1( Vi1 reres Vivime1)

Let T(x) e L,”(R) be such that
Tx)=0 for x <0,
Tx) =1 for x>=1,
| DT ||z o1 < C; < 0, j=0,1,.,m—1.
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T is a kind of transition function; it can be constructed by integrating the
perfect B-spline (see [3]). With

-v I ’;"i
di(x) = @ix) - T (-J—;Jr—:-)*/—) (3.0

we now define a linear functional for functions fe L,[a, ] by

Yitm
Af = f J o) L) dox. {(3.2)

THEOREM 3.1. The sequence of linear functionals {A)T* forms a dual

basis for {By+¥,

Proof. By the support property (2.4) of the B-splines, it follows directly
from (3.2) that

B =0, j=1L2,. . i—mi+m.,m+ K
Now it is easily shown (cf. [16]) that if L fe LIy, , ¥,.), then

c i B LE ()
(s s Spombaf = [ 2 In ()

Y )

dx. (3.3)
This implies that
AB; = [ ¥y sees Vi s B -

Since ¢;(x) vanishes at y,;,..., Jiim.1 (With derivatives when there are
repetitions), it follows that

AB; =0, j=i+1—m..,i—1L

The functions i, and ¢; agree on the point set y; ,..., y;4., (along with their
derivatives in case of repeated y’s) for j > i. Since @; € U}, this implies

AB; = [ Y5 ey Yigmls @i = 0, j=i+1,.,i+-m—1

It remains to check that A;B; = 1. By construction o,; agrees with the
function

U:‘n+1(yz' seens Nigm—1 > X)

DU,’;( Y snens .}’i+1)z—1)

D
&(x) =
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on the point set y; ,..., Y. . But then

/\le = [yz LRRLE) yz’+m]>k fz = 1;

and the theorem is proved. [

The following theorem gives bounds on the linear functionals {A;}7X.

THEOREM 3.2. The linear functionals {\{*X defined in (3.2) satisfy
(Az B (yz+m yz))

AT < CAFP ) [ gyt (3.4)

"-"'H-m] >

i=1,2,...,m+ K and any 1 < p < oo, where C is a constant depending
only on m and the quantities in (2.15).

Proof. Applying the Holder inequality to (3.2), we have (with I; =
[Vis YeraD)

[AS < ”f”Lp[Ii] “l L;:lﬁz “Lp,[Iz-]

with 1/p + 1/p’ = 1. Using the Leibniz rule, it is easy to show by induction
on m that

m
L;I:L (X c’”(x) Dk _‘_)‘z_ L% 7
@ = ¥ Gy DT (5= Hrel)

where ¢,(x) depends only on the values of {w;}{" and their derivatives while

d(x) depends only on powers of {;}7* . Since
— Vs Chr
Dt (e ” L — k=0,1,.,m
H ( Yitm — Vs ) ”Lw[Ii] ( Yirm yl)m—k

and L}, = 0, this implies

[ A f] | L@ iz,
max

rem — YL T T T Nm -
HfHL [1,1 S Giem ‘ o<k<m ( Viem — Yy

(3.5)

By Lemma 2.4, and the definition of ¢,,
| Lfgix)] = C3| D*®y(x)l,  xel,

where

V(Yii1 seees Vigmet s X)
q‘)l_ X) — P41 smrey Jigm—1 »
( ’ V(yi+1 ERES ] yi—f—m—l)
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Now suppose

~ S
Vicd seees Vigme1 = Traen Ty < 00 < Tg " Ty
Then
a
B,(x) = I (x — =
i=1

and it follows that
| DD(x)) < Cdr—1%, ke =0,1,.,m— 1
Substituting this in (3.5) yields (3.4). §

The dual basis {A}7" for {B,}{""* can now be used to examine the con-
ditioning of this basis.

TeeorREM 3.3. Fix 1l <p << w. Fori=1,2,....,m + K let
B, (x) = 47HPB(x). (3.6
Then there exist constants 0 << C;, Cy << o0 depending only on m and the

quantities {M; , MY in (2.15) (with respect to the finitely many intervals J,)
such that

rm+X 1/p i'erK | K \iip
( Z | ¢ ip) < G | Z ciBi,p | < Cz( Z be; “’) (3.7
ie1 : et HLyla,0] V=1

Jor all sets of coefficients ¢, ,..., Coix -

Proof. Lets = Z’LJ;K ¢;B; ., . Then

m+K m+K _ m+K
Z e, 1P = z I Asird, < C }: s \Iip["z-} < Cl S“iy[u,b] .
i=1 i=1 i=1

Conversely, by our normalization of the B-splines (cf. (2.10)-(2.11)

| B () < M, - 4717, i=12,....m+ K
Thus,
/] K rq 3 1D
[ tsords =Y | Y Bl
a =0 V; i=j—-m+1
K L xj H
: it p-1 .
<y [‘ max || B, , i ) m® Mool
=0, J-mil<i; i=j—mi 1
m-+K

<C Y el |
i=1
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4. APPLICATIONS

In this section we illustrate how the dual basis constructed in the previous
section can be used to derive properties of L-splines. We begin by defining
a useful approximation operator. Let {B;}7*¥ and {A\,}7***¥ be as in 3. Then
for every f € L,[a, b] we define

m+K

Of(x) = 2 A fBi(x).

Q is a mapping of L,[a, b} onto the spline space F(L;.#; 4). In analogy
with similar operators which have been constructed for polynomial splines,
we call it a quasi-interpolant (cf. [, 4, 13]).

THEOREM 4.1.  Q is a bounded linear projector of L,la, b] onto F(L; 4 ; 4).
Moreover, if fe L,™a, b) = {f: Dife L{a, b),0 < j < m} then for j =
0,1,.,m—1,

Zm+1/q~l/p

| DI(f— 0D, < CE—— 1 LA, C8)

for all 1 < p < q < oo. Here C is a constant which is independent of both
JFand 4 while 4 is defined by 4 = miny<; i, ( Vir1 — Vi)-

Proof. Fix 0 £j=<m—1 and a <t < b. By the generalized Taylor
expansion associated with Green’s function g% corresponding to the operator
L% | we have

100 =20 + [ g30x: ) LIy b, “2)
with p; e U,, such that
Dif(t) = Dip{t), j=0,1,.,m—1.
Since clearly Qg = g for all g € #(L; m; 4), Theorem 3.2 implies
| DI(f — QN = | Di(p; — O XD

m+k

= % A p; — f) DB{1)]

i=1

=C ) ZZ-_I/Z’HPf — fllL,ap | DIBL1)l,

t=v+1—mn

where v = »(¢) is such that re/,, where in general I, = [y;, y,.1). Now
applying the Holder inequality to (4.2), and observing that

lgkee; )l < Clx—t[»' forall xandz,



ot
o
()

DUAL BASIS FOR L-SPLINES

one easily sees that

T2 f ~ pyliug < CA=S7 | If g

By a Bernstein—Markov-type inequality for L-splines {cf. [12}),

C

| D'B1)| = YL

NB:ll, Jj=0,1.,m—1

Combining these facts, we obtain

Am—~1/p v
D — 0n®1 < €2 S L.
= i=p+1--m

and integrating the gth power,

Am-jpitg 7

| DI(f — OO,y < C:—T— Z I LA Lyt -

= r=i+l—m

Summing this inequality over /= m,...,m + K and using the Jensen
inequality we obtain (4.1). [

As a second application of our dual linear functionals, we now give error
bounds for best interpolating L-splines. Let y, <{ 35 << ** <C Youax be a
set of points with y; < y;.. , all i, and such that

Nh="""=Vn=4a b= Yuiz1 =" = Vomsk -
Foreach i = 1, 2,..., m + K, define

d; = max{j:y; = =" = y;_;}

and

pof = Ddif( Vi)

Associated with these linear functionals we may consider the best
interpolation problem

miggrg;ze | Lol Lya,01 . (4.3}

where F is a given function in L,™[a, b}, and

Ur = {fe L"a, bl: pof = pif,i = 1,2,..., m -+ K} 4.4



164 SCHERFR AND SCHUMAKER

Such best interpolation problems have been considered by many authors
(see, e.g., [9, 11] and the references therein).

It is known (cf. [11]) that if K > m then problem (4.3) has a unique solution
s (called an L-spline) and s is uniquely characterized by the fact that it lies
in Uy and satisfies the orthogonality condition

]
f Ls(x) Lg(x)dx =0  forallge U,.

The spline s can be determined numerically if we introduce the B-splines
{B¥}"X associated with the partition { y;}7"** and the operator L*. In this
case, it 1s known that

m+K

Ls(x) = Y. ¢e;Bfa(x), 4.5

i=1

To determine the coefficients {c;}, we observe that (cf. (3.3)) for each
j=12..,m+ K,

b
f Bf(x) LF(x) dx = [¥; soes Vismls F = [ V5 50es Vismlsc 5

m+K

b
= Y o[ Bi(x) Biux) dx.
i=1 a

This implies that
Ac =r, (4.6)

m+K :
where ¢ = [¢ o0y Cpa]Ts F = (P10 Pmgx)T> and A = (4)755 , with

ry = [ B LFCe) d,
i %)
Ay = [ Bl Bl () dx.

(Here we have used the normalized versions of the B-splines introduced in
(3-6).)

As a first step towards establishing error bounds for F — s, we have
the following theorem. -

TaECREM 4.2. Let 1 < p < oo. Then

I Ls|l, = C|| LF [l,(4/4)rre=1r1 (4.8)

where C is a constant independent of F, s and 4. (In the following, C is always
such a constant but may have a different value in each line).
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Proof. First we show that the condition number K = {4, |l 47,
is bounded independently of A. For any vector v € R™%, {3.7) (applied to the
B-splines Bjf;) implies

| Ayl = | X 7B

vz vl

This shows || 47! ||, is bounded. On the other hand,

— sup Y- B
Iyl = sap =g,

= sup | [ £ .85 X BiBle |f181s
< sup ” Y Bl “” Y BB J

=Clivle,

Il

where we have again used (3.7). This shows || 4 i, is bounded. By a theorem
of Demko [6], the elements b;; of the inverse matrix 4~ then satisfy

| by | < COI1

for some constants C and 6 € [0, 1) which are independent of 4. Thus, we

have
(s <cfs(soes o)
‘;

i/p 1/p
<cyon(Sinar)” s c(zing)

Since, by (3.7),

m+K gn'-LK gl/p
HLslly =| Y, c Y <Cmax.411”1'2?‘z | e, 1%}
i=1 i

and furthermore

(EKI r l”) ’

p)1
!

i
i

II/\

cis|] 4

_ 1/p
C max 4}/7'~1/2 )Z I LFHIL,P[Iﬂg
J . i

IA

< Cmax AW2-4r i LF,,

g

the combination of all these inequalities gives (4.8).
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Using Theorems 4.1 and 4.2 we can now establish the desired error bounds
for L-spline interplation.

TurEOREM 4.3. Fix | < p < oo. Then for 4 sufficiently small, the solution
== s(F) of the best interpolation problem (4.3) satisfies

I DE=9), < I ILFl,. 0=j=m @49

if Fe L, ™[a, b, and

Azm _
A Ri(4/4), 0=j=2m—1

i (4.10)

| DI(F — ), = C

if Fe L*™a, b). Here the constant C, does not depend on F or 4 while R(d]4) =
(A—/é)max('m,Zm—j)Hl/p—l/Z]_

Proof. By inequalities (3.7) and (3.9) in [11] we have
| DI(F — s(Flp < c CILEF—sE,, 0=j<m (41

(Actually these inequalities are stated there only for p = 2, but the proof
carries over immediately to general p.) Coupling (4.11) with (4.8) yields (4.9).

To prove (4.10), we use the standard trick of working with an intermediate
approximation. Let &, = {f€ L3 '[a, b]: |, € Npwy, i = O, 1,..., k}. By
the methods above we can construct a qua31-1nterpolant 0 mapping L ,[a, b]
onto . . Let g = F — OF. Then theorem 4.1 for this quasi-interpolator
implies

A2m
"Ai NL*LFl,, O0=<i<2m—1 (412

Il Digll, = C
Since s(OF) = OF, it follows that
| D(F — $)ll, = || D’g — Dis(lly, = | Dgllp + | Ds(gl,. (4.13)

We need tof:estimate the second term, Let m =< j < 2m — 1. Then by a
Bernstein~Markov-type inequality for L*L-splines (cf. [12]),

| Dis(g)ll = CA™ || D™s( )|l
= CA™4(| D™(s(g) — gl + | D™g |I,)- (4.14)
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Using (4.8) and (4.11)-(4.12), we obtain

| D™(s(8) — D, = CAID™ || L(s(8) — &), = C(jdym+ie=121 | Le

= Cd/4ymirie=220 Y fia .|| Digll,

i=0

< C(Z/A)Zmﬂl/p"l'zl Am H L*LFH,,

Substituting this in (4.14) and then in (4.13), we obtain (4.10) form < j =
2m — 1.
Now let 0 < j < m. Then (4.10) follows from the fact (cf. {11]) that

| DIF — s)ll, < €A DY(F s, . 1§

5. REMARKS

1. If Lis such that N; has a basis {#;}T which is an ECT-system through-
out [g, b], then the LB-splines and the dual basis can be constructed without
the assumption that 4 be sufficiently small. In this case the L-splines are
called Tchebycheffian splines. Tchebycheffian B-splines were first constructed
by Karlin [13]. Here we have followed the construction and normalization
of Marsden [15]. For more on the construction of local support bases for
generalized spline spaces, see Jerome [8] and Jerome and Schumaker [10].

2. OQOur approach to constructing a dual basis for the Tchebycheffian
B-splines follows that of de Boor [3] used for the polynomial B-splines.
There explicit numerical bounds for the norms of the linear functionals
could be obtained.

2

3. The quasi-interpolant constructed in Section 4 is only one of a large
collection of possible quasi-interpolants. It is possible that analogs of the
quasi-interpolants of Lyche and Schumaker [14] could also be found for
L-splines. Their advantage was that the bounds on (lower) derivatives could
be established which did not depend on 4. Theorem 4.1 gives bounds on
the distance from L-spline spaces to various calsses of smooth functions.
For related results of this type, see Jerome [8] and Johnen and Scherer [12].
It is also possible to sharpen Theorem 4.1 to give estimates in terms of certain
K-functionals andjor generalized moduli of smoothness—see DeVore [7}
for the polynomial spline case.

4. Bounds on the error of L-spline interpolation in terms of {j LF ||, or
i L¥LF ||, have been established in several papers; see, e.g., Swartz and Varga
[18], Jerome and Varga [11], and Varga [19]. For polynomial splines, de Boor
[2] gave estimates in terms of the co-norm—(he actually considered the some-
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what different and more complicated case of a biinfinite set of interpolation
conditions. The results given here can be extended to include more general

in
[5

terpolation conditions (cf. Varga [19]), and can also be made local (cf.
, 11] in the polynomial case). Biinfinite sets of interpolation conditions as

well as periodic problems could also be considered.

10.

11.

12,

3.

14.

15.

16.
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